Assessing our Calculus Readiness Test

Richard Taylor

Department of Mathematics & Statistics Thompson Rivers University

Sharing Math, May 2016

Why a readiness test?

- many students lack basic skills (a.k.a. algebra)
- no system to enforce high school prerequisites
- no provincial final exams
- lots of international students

Goal: identify students at risk of failure due to lack of skills

Provisos

Students fail calculus for lots of reasons:

- essential skills
- effort / motivation
- language barriers
- external pressures: job, family, mental health, . . .

We can't predict every failure . . .

Can we measure a level of knowledge / skills below which success is unlikely?

Pilot readiness test: Fall 2014

- ▶ 25 questions (plagiarized from AMS, MIT, U. Cape Breton,...)
- ▶ 45 minutes
- given first day of classes (hmmm...)
- ightharpoonup tracked outcomes for ~ 100 students

Is readiness test score correlated with course grade?

Pilot Results (Fall 2014)

Course Grade vs. Test Score (Original Test)

Pilot Results (Fall 2014)

Course Grade vs. Test Score (Original Test)

Test Scores by Course Outcome (Original Test)

"Pass" = "course grade > 60%"

We can predict a pass...

Predicting Course Pass by Readiness Test Score (original test)

but not failures...

Predicting Course Failure by Readiness Test Score (original test)

Summary

- failing students typically did worse on the readiness test
- but lots of outliers:
 - students with very low test scores who did well
 - students with good test scores who still failed
- ightharpoonup score $> 12 \implies$ very likely to pass
- but ∄ score below which failure probability is much higher than 44% "background rate"

Most of the questions are poor discriminators. How to improve on this?

A Good Question:

Contingency Table for Q8

Q8 is predictive: wrong answer \implies likely to fail

odds ratio =
$$\frac{\text{odds of failure if answering wrong}}{\text{odds of failure if answering right}} = \frac{15/6}{16/33} \approx 5.2$$

A Good Question:

If
$$f(x) = \frac{3x+4}{x+3}$$
 then $f(a+2) =$

(a) 2 (b)
$$\frac{3a+7}{a+5}$$
 (c) $\frac{3a+6}{a+5}$ (d) $\frac{3a+4}{a+3}$ (e) $\frac{3a+10}{a+5}$

(c)
$$\frac{3a+6}{a+5}$$

(d)
$$\frac{3a+4}{a+2}$$

$$\frac{3a+10}{1}$$

An Irrelevant Question:

Contingency Table for Q15

Q15 is not predictive:

odds ratio =
$$\frac{10/12}{21/27} \approx 1.07$$

Answers appear random. Q15 just adds noise to the test scores!

An Irrelevant Question:

Simplify:
$$\frac{\sqrt{a^8b}}{a^2b}$$

(a) a^6b^3

(b) a^4b^2 (c) a^2b (d) a^2

A Too-Difficult Question:

Contingency Table for Q17

Q17 is too difficult:

- too few right answers
- positive odds ratio not statistically significant
- yields no information on most students

A Too-Difficult Question:

Solve for
$$x$$
: $\frac{9}{x-10} - \frac{204}{x^2-100} = 1$

Correlations with course grade

Pearson Correlation Coeff.

Lots of hard questions

Conclusions (2014/15)

- ▶ 2015 test has litte predictive value
- too many bad questions:
 - poor discriminators
 - too difficult (so uninformative)
- only 10 (of 25) questions have good predictive value
- ▶ 10 good questions not enough: need at least 20 for test score to discriminate "passing" and "failing" populations

Revised Test for 2015/16:

- delete poor discriminators
- make too-hard questions easier
- add new questions to give 25 total

Results (Fall 2015)

Results (Fall 2015)

Course Grade vs. Test Score

Results (Fall 2015)

Test Scores by Course Outcome

Low score \implies high risk of failure

Predicting "Fail" by Score Below Threshold (2016)

Predicting Course Failure by Readiness Test Score (original test)

Predicting "Fail" by Score Below Threshold (2016)

High score \implies high chance of success

Predicting "Pass" by Score Above Threshold (2016)

Predicting Course Pass by Readiness Test Score (original test)

Quality of questions (Fall 2015)

Conclusions

Revised test is a useful advising tool:

- ▶ score below $8/25 \implies \text{high risk (65\%) of failure}$
- ▶ score above $12/25 \implies \text{good chance (65\%) of success}$

Need one more iteration:

- ▶ have 17 good(ish) questions...need more
- many questions still too hard